Search results for "variational problems"
showing 6 items of 6 documents
Existence and multiplicity of solutions for non linear elliptic Dirichlet systems
2012
The existence and multiplicity of solutions for systems of nonlinear elliptic equations with Dirichlet boundary conditions is investigated. Under suitable assumptions on the potential of the nonlinearity, the existence of one, or two, or three solutions is established. Our approach is based on variational methods.
A reliable incremental method of computing the limit load in deformation plasticity based on compliance : Continuous and discrete setting
2016
The aim of this paper is to introduce an enhanced incremental procedure that can be used for the numerical evaluation and reliable estimation of the limit load. A conventional incremental method of limit analysis is based on parametrization of the respective variational formulation by the loading parameter ? ? ( 0 , ? l i m ) , where ? l i m is generally unknown. The enhanced incremental procedure is operated in terms of an inverse mapping ? : α ? ? where the parameter α belongs to ( 0 , + ∞ ) and its physical meaning is work of applied forces at the equilibrium state. The function ? is continuous, nondecreasing and its values tend to ? l i m as α ? + ∞ . Reduction of the problem to a finit…
A posteriori error identities for nonlinear variational problems
2015
A posteriori error estimation methods are usually developed in the context of upper and lower bounds of errors. In this paper, we are concerned with a posteriori analysis in terms of identities, i.e., we deduce error relations, which holds as equalities. We discuss a general form of error identities for a wide class of convex variational problems. The left hand sides of these identities can be considered as certain measures of errors (expressed in terms of primal/dual solutions and respective approximations) while the right hand sides contain only known approximations. Finally, we consider several examples and show that in some simple cases these identities lead to generalized forms of the …
Solutions to the 1-harmonic flow with values into a hyper-octant of the N-sphere
2013
Abstract We announce existence results for the 1-harmonic flow from a domain of R m into the first hyper-octant of the N -dimensional unit sphere, under homogeneous Neumann boundary conditions. The arguments rely on a notion of “geodesic representative” of a BV-vector field on its jump set.
THE 1-HARMONIC FLOW WITH VALUES IN A HYPEROCTANT OF THE N-SPHERE
2014
We prove the existence of solutions to the 1-harmonic flow — that is, the formal gradient flow of the total variation of a vector field with respect to the [math] -distance — from a domain of [math] into a hyperoctant of the [math] -dimensional unit sphere, [math] , under homogeneous Neumann boundary conditions. In particular, we characterize the lower-order term appearing in the Euler–Lagrange formulation in terms of the “geodesic representative” of a BV-director field on its jump set. Such characterization relies on a lower semicontinuity argument which leads to a nontrivial and nonconvex minimization problem: to find a shortest path between two points on [math] with respect to a metric w…
Relationship between volume and energy of vector fields
2001
Abstract A unified study of energy and volume functionals is presented here by determining the critical points of a functional that extends simultaneously energy and volume and that is defined on the product of the manifold of smooth maps C∞(M,N) times the manifold M of riemannian metrics on M. The restriction of this functional to different submanifolds of the space of vector fields X (M)× M is also considered, and used to study several functionals generalizing volume and energy or total bending of vector fields